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(Also, denote head S-reduction as M — N)



Type Safety of STLC

Theorem (Termination of STLC):
If ) - M : ans, then either M yes or M s no.

Lemma (Progress of STLC):
If) - M : A, then either value M or AN, M — N.

Lemma (Preservation of STLC):
IfO-M:Aand M — N,then() - N : A.
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Type Safety of STLC

Theorem (Termination of STLC):
If ) - M : ans, then either M yes or M s no.

Syntactic Approach: Progress + Preservation, but not accounting
for non-divergence!

Semantic Approach: direct proof (via logical relations)



Termination, attempt 1

Theorem (Termination of STLC):
If ) - M : ans, then either M yes or M s no.

Proof:



Termination, attempt 1

Theorem (Termination of STLC):
If ) - M : ans, then either M yes or M s no.

Proof:

By induction on the derivation of 0 = M : ans.
« Case Yrs and No: trivial.



Termination, attempt 1

Theorem (Termination of STLC):
If ) - M : ans, then either M yes or M s no.

Proof:

By induction on the derivation of 0 = M : ans.
« Case YEs and No: trivial.

 Case Lrr:

IH: if ans = ans x Band () - M : ans, then either M yes or M s
no. ??7?



Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):
If) - M : A, then 3N, M = N and value N, where

YES NO UNIT
value yes value no value ()

P L
value (M, M,) P Value Az

Proof:



Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):
If) - M : A, then 3N, M > N and value N, where

YES NO UNIT
value yes value no value ()

P L
value (M, M,) P Value Az M

AM

Proof:
« Case Lrr:
Assume: ) M : A x B
[H: 3N, M > N and value N.
wts. IN? s.t. M.1 > N? and value N”.



Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):
IfQ - M : A then 3N, M — N and value N, where

YES NO UNIT
value yes value no value ()

PROD

L
value (M, M,) value \z. M

Proof:

« Case Lrrt:
AN, N,, M + (N,, N,) (by IH, preservation and value)
wts. M.1 5 N; and value N;. ???



Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):
If) - M: A, then3N, M s N and -tvalue N , where

YES NO UNIT
~=value yes ~=value no ~=value ()

_evalue M; cevalue M2P ? .
ROD AM

~=value (M, M,) _=value \xz. M




Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):
If) - M : A, then 3N, M — N and -tvalue N

cvalue M, cevalue M, PROD
,;:‘Vallle <M1,M2>

? What about ((Y,N).1,...)

 Consider -




Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):
If) - M : A, then 3N, M — N and -tvalue N

cvalue M, cevalue M, PROD
,;:‘Vallle <M1,M2>

? What about ((Y,N).1,...)

. Consider !
evalue \oe. M

How to fill the hole?

~=value M|[N/z] T AM? M[N/z]»M’ svalue N= -tvalue M’

~=value \e . M ~=value \e. M

 Consider -

LAM

LAM?



A better - -value

Theorem (Termination of STLC):
If) - M : A, then3IN, M = N and -tvalue N

YES NO UNIT
~=value yes ~=value no _=value ()

M, > M{ M, > M, c<evalue M{ csvalue M,
~=value (M, M,)

PROD

M|N /z] — M’ <tvalue N = ‘tvalue M’

~=value \ae. M

LAM

Note: = means meta-level implication.



=T:—= + _=value

Theorem (.= Termination of STLC):
IfOF- M: A, then =T M.

% X
M +» yes M + xno M+ ()
YES No UNIT

=T M =T M =T M

M s (M, M,) =T M, =T M,
=T M

PROD

M+ Az.M’ T N = +T M'[N/z]
LT M

LAM




=T:— + _=value

M|i>yes M — xno M|i>()
YES NO

LT M LT M LT M

M+ (M, M,) =T M, =T M,
=T M

PROD

M+ Az.M’ T N = +T M'[N/z]
LT M

LAM

Problem: =T is undecidable and hard to reason!

If only we can know the intended canonical form of a term in advance...



Hereditary Termination (HT: type-indexed - -T)

Conjecture (?Hereditary Termination of STLC):
IfQ-M: A, thenHT , M.

M|i>yesY M|—>>|<noN M|i><>U
ES 0 NIT
HT_ (M) = HT, (M)  HT,(M)

ans ( ans (

M+~ (M,M,) HT,(M;) HTg(M,)

PROD
HTAX B (M>

M 5 Az.M’ HT ,(N) = HT 3(M'[N/z])
HTA—>B(M)

LAM




Hereditary Termination (HT: type-indexed - -T)

Conjecture (?Hereditary Termination of STLC):
IfQ-M: A, thenHT , M.

HT, (M):= M5 yesor M s no HT, (M) = M > ()

ans (

HT ,, 5(M) := M > (M,, M,) and HT ,(M,) and HT 5(M,)
HT ,_, 5(M) := M > Az.M’ and HT ,(N) = HT (M’ [N /z])



Termination, attempt 4 (plain HT)

Conjecture (?Hereditary Termination of STLC):
IfQ0- M: A then HT ,(M).

Proof:
« Case Lrr:

Assume ()t M : Ax B,byIHHT ,, z(M)
wts. HT , (M .1)



Termination, attempt 4 (plain HT)

Conjecture (?Hereditary Termination of STLC):
IfQ0- M: A then HT ,(M).

Proof:
« Case Lrr:

Assume ()t M : Ax B,byIHHT ,, z(M)
wts. HT , (M .1)

By HT . (M), we know M + (M,, M,) and HT , (M),
and observe that /.1 +5 (M, My). 1+ M,.



Termination, attempt 4 (plain HT)

Conjecture (?Hereditary Termination of STLC):
IfQ0- M: A then HT ,(M).

Proof:
« Case Lrr:

Assume ()t M : Ax B,byIHHT ,, z(M)
wts. HT , (M .1)

By HT . (M), we know M + (M,, M,) and HT , (M),
and observe that /.1 +5 (M, My). 1+ M,.

. It suffices to show that HT is closed under “reverse execution”.



Head Expansion a.k.a. “reverse execution”

Lemma (Head Expansion):
If M > N and HT ,(N), then HT , (M)

Proof: by definition of HT.

(M):=M > yesor M s no HT, (M) := M + ()
M) := M+ (M,, M,) and HT 4 (M,) and HT 5(M,)
M) := M+ A\z.M’ and HT ,(N) = HT (M’ [N /z])

HT

ans

HTAXB(
HTA—>B<



Termination, attempt 4 (plain HT)

Conjecture (?Hereditary Termination of STLC):
If0-M: A, thenHT 4,(M).

Proof:

« Case Lawm;

IH2:if) =0,z : Aand 0,z : A+ M : B,then HT 5(M)



Termination, attempt 4 (plain HT)

Conjecture (?Hereditary Termination of STLC):
If0-M: A, thenHT 4,(M).

Proof:

« Case Lawm;

IH2:if) =0,z : Aand 0,z : A+ M : B,then HT 5(M)

Il Need to generalize over I', but HT applies only to closed terms!



How to deal with open terms?

Given subst ~ from variables to terms,
wesay IV~ :TiffVe: Ae T, TV F~(x) : A.
Subst Lemma:

IMtF~y: T TTHEFM:A
IV My]: A




How to deal with open terms?

Given subst ~ from variables to terms,
wesay IV~ :TiffVe: Ae T, TV F~(x) : A.

Subst Lemma (specialized):

Pb~:T THM:A
DF Mv]: A




How to deal with open terms?

Given subst ~ from variables to terms,
wesay IV~ :TiffVe: Ae T, TV F~(x) : A.

Idea: adopting subst lemma to HT,

HT (v) I'> MeA
HT 4 (M][v])

where HT(v) :=Vz : A€ ', HT 4 (x|v])



How to deal with open terms?

Given subst ~ from variables to terms,
wesay IV~ :TiffVe: Ae T, TV F~(x) : A.

Idea: adopting subst lemma to HT,
I'>MeA:=HTp(y) = HT ,(M|v])

where HT(y) :=Vz : A € I', HT 4 (z[Y])



Hereditary Termination, finally

Theorem (FTLR of HT, or Hereditary Termination of STLC):
IfI'EM: A thenT > M € A. (whereT > M € A:= HT(v) = HT ,(M[4]))

Proof:

« CaseVvar (I' » a € A):
By assumption, a: A € I'. Assume HT(v), wts. HT 4 (a[|v]).
So~vy(a) = M s.t. HT 4,(M). But, a|y] = v(«). We are done.



Hereditary Termination, finally

Theorem (FTLR of HT, or Hereditary Termination of STLC):
IfI'E M : A, thenT > M € A. (whereT > M € A:= HT(y) = HT ,(M[1]))

Proof:

« CaseLam (I' > Az.M : A — B):
Assume HT(v), wts. HT 4, . 5(Az.M|v]). By definition of HT , . 5, as-
sume HT ,(N), wts. HT g(M [v][N /z]).
By L.H., Vo', HT . o(7") implies HT g (M |7/']). Specializing I.H. by v :=
v,z — N, and note that HT . ,(7"), we have HT (M |,z — N|), and
HT 5(M[)][N/z)).

Idea: apply v from premises (by I.H.) to the conclusion.



From Termination to (Weak) 5-Normalizing

Termination: head S-reduction of well-typed closed terms stops at canonical
forms (value).

Normalization: full 3-reduction of well-typed open terms stops at S-normal
forms (can not step anymore).

M, — M, M — M’
B AprP2 B ABS
M, M, E) M, M Ax. M ? . M’
M, — Mj] M, — M,
B p PRODL b > PRODR
(M, My) — (M7, M,) (My, My) — (M, M?)

p p



Normalization of STLC, formally

Normalization: full 5-reduction of well-typed open terms stops at
B-normal forms (can not step anymore).

Formally, define normg(M) := 3N, M % N and N 4;

Theorem (Normalization of STLC):
IfI'= M : A, then normg(M).

by proving the following lemma



From HT to HN: Kripke LR

HT , (M) only applies to closed terms, while HN must deal with
open terms.

Solution (Kripke LR): index over free variables (A), or “possible
worlds”.

HNZ% (M) is indexed by variable contexts A and types A on well-
formedterms A + M : A.



Hereditary Normalizing (HN)

HT, (M):=M > yesor M > no HT, (M) =M > )

ans (

HT ,, (M) := M s (M,, M,) and HT , (), ) and HT z(}\1,)

(
HT ,_, 5(M) := M > A\z.M’ and HT 4(N) = HT (M’ [N /z])

HN2 (M) := normg (M) HN2 (M) = normg (M)

HNZ%, (M) := HN% (M.1) and HN5 (M .2)
HN4 (M) :=VA < A HNY (N) = HNS (MN)



HN vs HT
« HNZ, 5(M) := HN%(M.1) and HN5(M.2) vs HT 4, g(M) =
M + (M,, M,) and HT 4 (), ) and HT 5(1\,)

M might be a variable, so it probably won’t reduce to canonical
form. Define HN via elimination instead of introduction.

I'-M,:A I'M,:B
'+ (M;,M,): Ax B

PROD

FM:AxB  TEM:AxB
T-FM1:A  TrM2:B "




HN vs HT
- HN4 ,(M):=VA’ < A,HN% (N) = HN% (MN)
AN<A=Ve,Atz: A= A"Fx: A le A’lsanextensionof A.

Intuitively: a function can be applied in a larger context by weak-
ening lemma.

Lemma (Anti-Monotonicity):
If HNS " and A’ < A, then HNS' (M),



Head Expansion for HN

Lemma (Head Expansion):

If M + N and HN% (), then HNS (M).
Proof: . /.

, It suffices to show that HN is closed under head expansion
Instead of full expansion.



FTLR of HN

Theorem (FTLR of HN, or Hereditary Normalizing of STLC):
IfT - M : A, then VA, HN2 (v) = HNZ (M[7]).

Proof: . .



One Missing Step: From Hereditary-7” to 7

Theorem (FTLR of HT)
IfI'M: A, thenT > M € A. (whereT' > M € A:= HT(y) = HT ,(M[)))

Theorem (Termination of STLC)
If ) - M : ans, then either M — yes or M = no.



One Missing Step: From Hereditary-7” to 7

Theorem (FTLR of HT)
IfI'M: A, thenT > M € A. (whereT' > M € A:= HT(y) = HT ,(M[)))

Theorem (Termination of STLC)
If ) - M : ans, then either M — yes or M = no.

Proof:
Instantiating FTLR withT' = 0 and A = ans, HT;(y) = HT 4(M[7])
HT;(v) holds trivially, and M|[y] = M because M is closed, so HT 4, (M).

Now we are done by the definition of HT.
L]



From HIN to Normalizing?

Not so easy!

HN%, 5(M) := HN4 (M.1)and HNA (M .2)vs HT ,, g(M) := M
(M, M,)and HT ,(M,) and HT g(M,)

1. HT works on closed term, thus the precondition is trivial, while
HN is not.

2. HT is defined by introduction, which means we have direct
iInformation about M itself, while HIN is defined by elim form like
M.1.



From HIN to Normalizing?

Theorem (FTLR of HNN)
IfT - M : A, then VA, HN2 (v) = HNZ (M[Y]).

Theorem (Normalization of STLC)
IfI'= M : A, then normg(M).



From HIN to Normalizing?

Theorem (FTLR of HNN)
IfT - M : A, then VA, HN2 (v) = HNZ (M[Y]).

Theorem (Normalization of STLC)
IfI'= M : A, then normg(M).

Proof:

It suffices to show that

1. HNL(:), where «(z) = z (i.e.,, T ¢ : T)

2. (Adaquacy) If ' - M : A and HN% (M), then normg(M)



HNT (¢)

Theorem: Vz : A € I, HNY, ()
(every variable in I' is hereditarily normalizing at its claimed type).

Proof:

By case analysis on A.

« Case Ans:
Assume o : ans € T, wts. HN} (o), which is to show normg(a),
and it follows directly from the definition of normsy.



HNT (¢)

Theorem: Vz : A € I', HN', ()
(every variable in T" is hereditarily normalizing at its claimed type).

Proof:

By case analysis on A.

« Case Prob:
Assumea : A x B € T',wts. HNY (o). It suffices to show HN, (a.1)
and HNL (a.2).

« Case Lam (HNY, _ 5(a)):
Assume VIV < I', HNY (M). It suffices to show that HNY ().
Applying adaquacy to assumption, we have normyg(M).



So, to prove HINY. (¢

We want to show that
HNY (a.1), HNY (a.2), and normg (M) = HNY (aM)



So, to prove HINY. (¢
We want to show that
HNY (a.1), HNY (a.2), and normg (M) = HNY (aM)

Generalize it a bit, we define neutralterm U :=x | U.1 | U.2 | UM as
terms that stuck regarding head reduction.

And we can define normalizable neutral term nnormy:

nnormyg(zr) := T
nnormg(U.1) := nnormg(U) nnormg(U.2) := nnormg(U)
nnormg(UM) := nnormg(U) and norm 4(M)

And we prove that if nnormg(U), then HN2 (U)



Pas-de-deux, or the Dance of Nnormy and HN

Lemma (Pas-de-deux): VAand AU, M : A,
1. If nmormg(U), then HNZ% (U)
2. IfHN% (M), then normg(M)

Proof: By induction on A,

- Case Lam:
1. (HN%_, 5(U)) Assume nnormy(U). Let A’ < A, it suffices to show that HN4 (V)

implies HN5'(UN). By induction (2), normg(N), thus nnormg(UN). By induc-
tion (1), HN4 (UN).

2. (normg(M)) Assume HN4 , 5 (M). Let A’ := A,z : A < A, we have HNS' (M),
and by induction (2), normﬁ(M:c). By definition, nnormﬁ(a:), so by induction (1),
HN% (). Then by analysis on -reduction, normg(M).



From HIN to Normalizing

Theorem (Normalization of STLC)
IfI'= M : A, then normg(M).

Proof:

It suffices to show that

1. HNL(2)

2. (Adaquacy) If T' - M : Aand HN% (M), then norm 4 (M)

Both follows from the pas-de-deux lemma.



Logical Relation, generalized on 7

Conjecture If ' - M : A, then PL (M).
Proof: Define LR hereditarily P as hP5 (M).
hPEM = M S () or M S U and Y

hPL, g(M) := hP3(M.1) and hP5 (M .2)
hPL  g(M) = VA < A,if hPL (N), then hP5 (MN)

Where n? (neutrally ) requires that the argument terms of U to be hP:
n?ﬁ’a:A(a) =T
nP3(U.1) :== nP%, 5(U)

) :
nP3(U.2) = nP, 5 (U)
nPS(UM) = nP%_ 5(U) and hPL (M)



Reduction Property 7

By concluding from our previous proof of FTLR and pas-de-deux, both
hold for 7 if:

1. PR(()).

2. If nP2(U), then PR(U).

3. If P4 (M.1) and P5(M.2), then P o(M).
4. If P (Mz), then P4 L(M).

We call this kind of property reduction property. So,

Theorem (Principle of reduction property)
Given reduction property P, if ' = M : A, then PL (M).



Conclusion

e To prove termination of STLC: logical relation HT.

« To prove normalization of STLC: Kripke-style LR HNN.
« From FTLR of HN to normalization: pas-de-deux.

« LR as a general principle: reduction property.

Interesting applications:

1. Strong normalizing is a reduction property.

2. Verify safety of ill-typed programs (think RustBelt).
3. LR indexed by source types but on target terms (think FFI).



Related Material

« Harper, Robert. “How to (Re)Invent Tait’s Method”. [Link]
Define Hereditary Termination HT

« Harper, Robert. “Kripke-Style Logical Relations for Normalization”. [Link]
Define Hereditary Normalizing HN

e Harper, Robert. “Strong Normalization as Transfinite Induction on Reduction”,
[Link]
Generalized LR, and an old but general approach to prove g-confluence via trans-
finite —-induction (property that satisfies head expansion).

« Harper, Robert. “How to (Re)Invent Girard’s Method”. [Link]
LR for System F.
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https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/kripke.pdf
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tir.pdf
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/girard.pdf
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