An Introduction to Logical Relations by (Re-)Inventing the Tait Method

STLC

$$\frac{x \in \Gamma}{\Gamma \vdash x : A} \text{VAR} \quad \overline{\Gamma \vdash \text{yes} : \text{ans}} \text{YES} \quad \overline{\Gamma \vdash \text{no} : \text{ans}} \text{No} \quad \overline{\Gamma \vdash \langle \rangle : 1} \text{Unit}$$

$$\frac{\Gamma \vdash M_1 : A \quad \Gamma \vdash M_2 : B}{\Gamma \vdash (M_1, M_2) : A \times B} \text{PROD} \quad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M.1 : A} \text{PRJ1} \quad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M.2 : B} \text{PRJ2}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \to B} \text{ABS} \quad \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \text{APP}$$

(Also, denote head β -reduction as $M \mapsto N$)

Type Safety of STLC

Theorem (Termination of STLC):

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Lemma (Progress of STLC):

If $\emptyset \vdash M : A$, then either value M or $\exists N, M \mapsto N$.

Lemma (Preservation of STLC):

If $\emptyset \vdash M : A$ and $M \mapsto N$, then $\emptyset \vdash N : A$.

slide-counter: (2,) last-slide-counter: (32,)

Type Safety of STLC

Theorem (Termination of STLC):

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Syntactic Approach: Progress + Preservation, but not accounting for non-divergence!

Semantic Approach: direct proof (via logical relations)

Termination, attempt 1

Theorem (Termination of STLC):

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Proof:

Termination, attempt 1

Theorem (Termination of STLC):

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Proof:

By induction on the derivation of $\emptyset \vdash M : ans$.

Case YES and No: trivial.

Termination, attempt 1

Theorem (Termination of STLC):

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Proof:

By induction on the derivation of $\emptyset \vdash M : ans$.

- Case YES and No: trivial.
- Case Lft:

```
IH: if ans = ans \times B and \emptyset \vdash M : ans, then either M \stackrel{*}{\mapsto} yes or M \stackrel{*}{\mapsto} no. ???
```

Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):

If $\emptyset \vdash M : A$, then $\exists N$, $M \stackrel{*}{\mapsto} N$ and value N, where

$$\overline{\text{value yes}}^{\text{YES}}$$
 $\overline{\text{value no}}^{\text{NO}}$ $\overline{\text{value }\langle\rangle}^{\text{UNIT}}$

$$\overline{\text{value } \langle M_1, M_2 \rangle}^{\text{PROD}} \quad \overline{\text{value } \lambda x. M}^{\text{LAM}}$$

Proof:

Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):

If $\emptyset \vdash M : A$, then $\exists N, M \stackrel{*}{\mapsto} N$ and value N, where

$$\overline{\text{value yes}}^{\text{YES}} \quad \overline{\text{value no}}^{\text{NO}} \quad \overline{\text{value } \langle \rangle}^{\text{UNIT}}$$

$$\overline{\text{value } \langle M_1, M_2 \rangle}^{\text{PROD}} \quad \overline{\text{value } \lambda x. M}^{\text{LAM}}$$

Proof:

• Case Lft:

Assume: $\emptyset \vdash M : A \times B$

IH: $\exists N$, $M \stackrel{*}{\mapsto} N$ and value N.

wts. $\exists N^?$ s.t. $M.1 \stackrel{*}{\mapsto} N^?$ and value $N^?$.

Termination, attempt 2 (generalizing the type)

Theorem (Termination of STLC):

If $\emptyset \vdash M : A$, then $\exists N$, $M \stackrel{*}{\mapsto} N$ and value N, where

$$\overline{\text{value yes}}^{\text{YES}} \quad \overline{\text{value no}}^{\text{NO}} \quad \overline{\text{value } \langle \rangle}^{\text{Unit}}$$

$$\overline{\text{value } \langle M_1, M_2 \rangle}^{\text{PROD}} \quad \overline{\text{value } \lambda x. M}^{\text{LAM}}$$

Proof:

Case Lft:

 $\exists N_1 N_2, M \stackrel{*}{\mapsto} \langle N_1, N_2 \rangle$ (by IH, preservation and value) wts. $M.1 \stackrel{*}{\mapsto} N_1$ and value N_1 . ???

Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):

If $\emptyset \vdash M : A$, then $\exists N, M \stackrel{*}{\mapsto} N$ and $\biguplus \mathbf{value}\ N$, where

Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):

If $\emptyset \vdash M : A$, then $\exists N$, $M \stackrel{*}{\mapsto} N$ and $\biguplus \mathbf{value}\ N$

- Consider $\frac{\text{value } M_1}{\text{value } \langle M_1, M_2 \rangle}$ Produce $\langle M_1, M_2 \rangle$
 - ? What about $\langle \langle Y, N \rangle.1, ... \rangle$

Termination, attempt 3 (strengthening value)

Conjecture (Termination of STLC?):

If $\emptyset \vdash M : A$, then $\exists N$, $M \stackrel{*}{\mapsto} N$ and $\biguplus \mathbf{value}\ N$

- Consider $\frac{\text{value } M_1}{\text{value } \langle M_1, M_2 \rangle}$ Produce $\langle M_1, M_2 \rangle$
 - ? What about $\langle \langle Y, N \rangle.1, ... \rangle$
- Consider $\frac{?}{\text{levalue }\lambda x.M}$ LAM

How to fill the hole?

$$\frac{\text{devalue } M[N/x]}{\text{devalue } \lambda x.M} \text{LAM?} \frac{M[N/x] \overset{*}{\mapsto} M' \quad \text{devalue } N \Rightarrow \text{devalue } M'}{\text{devalue } \lambda x.M} \text{LAM?}$$

A better devalue

Theorem (Termination of STLC):

If
$$\emptyset \vdash M : A$$
, then $\exists N$, $M \stackrel{*}{\mapsto} N$ and $\biguplus \text{value } N$

$$\frac{M[N/x] \overset{*}{\mapsto} M' \quad \text{$\stackrel{}{\rightleftharpoons}$ value $N \Rightarrow \text{$\stackrel{}{\rightleftharpoons}$ value M'}}{\text{$\stackrel{}{\rightleftharpoons}$ value $\lambda x.M$}} \text{Lam}$$

Note: \Rightarrow means *meta-level implication*.

$\mathbf{t} \mathbf{T} : \mapsto \mathbf{t} \mathbf{t}$ value

Theorem (**topsilise** Termination of STLC):

If $\emptyset \vdash M : A$, then $d racksquare \mathbf{T} M$.

$$\frac{M \overset{*}{\mapsto} \operatorname{yes}}{\mathbf{T} M} \operatorname{YES} \quad \frac{M \mapsto \operatorname{*no}}{\mathbf{T} M} \operatorname{No} \quad \frac{M \overset{*}{\mapsto} \langle \rangle}{\mathbf{T} M} \operatorname{Unit}$$

$$\frac{M \overset{*}{\mapsto} \langle M_1, M_2 \rangle \quad \mathbf{T} M_1 \quad \mathbf{T} M_2}{\mathbf{T} M} \operatorname{PROD}$$

$$\frac{M \overset{*}{\mapsto} \lambda x. M' \quad \mathbf{T} N \Rightarrow \mathbf{T} M' [N/x]}{\mathbf{T} M} \operatorname{LAM}$$

$\mathbf{t} \mathbf{T} : \mapsto \mathbf{t} \mathbf{t}$ value

$$\frac{M \overset{*}{\mapsto} \operatorname{yes}}{\mathbf{T} M} \operatorname{YES} \quad \frac{M \mapsto \operatorname{*no}}{\mathbf{T} M} \operatorname{No} \quad \frac{M \overset{*}{\mapsto} \langle \rangle}{\mathbf{T} M} \operatorname{Unit}$$

$$\frac{M \overset{*}{\mapsto} \langle M_1, M_2 \rangle \quad \mathbf{T} M_1 \quad \mathbf{T} M_2}{\mathbf{T} M} \operatorname{PROD}$$

$$\frac{M \overset{*}{\mapsto} \lambda x. M' \quad \mathbf{T} N \Rightarrow \mathbf{T} M'[N/x]}{\mathbf{T} M} \operatorname{LAM}$$

Problem: \mathbf{T} is undecidable and hard to reason!

If only we can know the intended canonical form of a term in advance...

Hereditary Termination (HT: type-indexed \rightarrow T)

Conjecture (?Hereditary Termination of STLC):

If $\emptyset \vdash M : A$, then $\mathbf{HT}_A M$.

$$\frac{M \overset{*}{\mapsto} \mathrm{yes}}{\mathbf{HT}_{\mathrm{ans}}(M)} \mathrm{YES} \quad \frac{M \mapsto \mathrm{*no}}{\mathbf{HT}_{\mathrm{ans}}(M)} \mathrm{No} \quad \frac{M \overset{*}{\mapsto} \langle \rangle}{\mathbf{HT}_{1}(M)} \mathrm{UNIT}$$

$$\frac{M \overset{*}{\mapsto} \langle M_1, M_2 \rangle \quad \mathbf{HT}_A(M_1) \quad \mathbf{HT}_B(M_2)}{\mathbf{HT}_{A \times B}(M)}_{\mathrm{PROD}}$$

$$\frac{M \overset{*}{\mapsto} \lambda x. M' \quad \mathbf{HT}_A(N) \Rightarrow \mathbf{HT}_B(M'[N/x])}{\mathbf{HT}_{A \to B}(M)}_{\mathrm{LAM}}$$

Hereditary Termination (HT: type-indexed \rightarrow T)

Conjecture (?Hereditary Termination of STLC):

If $\emptyset \vdash M : A$, then $\mathbf{HT}_A M$.

$$\mathbf{HT}_{\mathrm{ans}}(M) \coloneqq M \overset{*}{\mapsto} \mathrm{yes} \ \mathrm{or} \ M \overset{*}{\mapsto} \mathrm{no} \quad \mathbf{HT}_{1}(M) \coloneqq M \overset{*}{\mapsto} \left\langle \right\rangle$$

$$\mathbf{HT}_{A \times B}(M) := M \overset{*}{\mapsto} \langle M_1, M_2 \rangle$$
 and $\mathbf{HT}_A(M_1)$ and $\mathbf{HT}_B(M_2)$

$$\mathbf{HT}_{A \to B}(M) \coloneqq M \overset{*}{\mapsto} \lambda x. M' \text{ and } \mathbf{HT}_A(N) \Rightarrow \mathbf{HT}_B(M'[N/x])$$

Conjecture (?Hereditary Termination of STLC): If $\emptyset \vdash M : A$, then $\mathbf{HT}_A(M)$.

Proof:

• Case Lft:

```
Assume \emptyset \vdash M : A \times B, by IH \mathbf{HT}_{A \times B}(M) wts. \mathbf{HT}_A(M.1)
```

Conjecture (?Hereditary Termination of STLC): If $\emptyset \vdash M : A$, then $\mathbf{HT}_A(M)$.

and observe that $M.1 \stackrel{*}{\mapsto} \langle M_1, M_2 \rangle.1 \mapsto M_1$.

Proof:

• Case Lft:

```
Assume \emptyset \vdash M : A \times B, by IH \mathbf{HT}_{A \times B}(M) wts. \mathbf{HT}_A(M.1) By \mathbf{HT}_{A \times B}(M), we know M \stackrel{*}{\mapsto} \langle M_1, M_2 \rangle and \mathbf{HT}_A(M_1),
```

Conjecture (?Hereditary Termination of STLC): If $\emptyset \vdash M : A$, then $\mathbf{HT}_A(M)$.

Proof:

• Case Lft:

```
Assume \emptyset \vdash M : A \times B, by IH \mathbf{HT}_{A \times B}(M) wts. \mathbf{HT}_A(M.1)
```

By $\mathbf{HT}_{A \times B}(M)$, we know $M \stackrel{*}{\mapsto} \langle M_1, M_2 \rangle$ and $\mathbf{HT}_A(M_1)$, and observe that $M.1 \stackrel{*}{\mapsto} \langle M_1, M_2 \rangle.1 \mapsto M_1$.

 $holdsymbol{igwedge}$ It suffices to show that ${f HT}$ is closed under "reverse execution".

Head Expansion a.k.a. "reverse execution"

Lemma (Head Expansion):

If $M \stackrel{*}{\mapsto} N$ and $\mathbf{HT}_A(N)$, then $\mathbf{HT}_A(M)$.

Proof: by definition of **HT**.

$$\begin{split} \mathbf{HT}_{\mathrm{ans}}(M) &\coloneqq M \overset{*}{\mapsto} \mathrm{yes} \ \mathrm{or} \ M \overset{*}{\mapsto} \mathrm{no} \quad \mathbf{HT}_{1}(M) \coloneqq M \overset{*}{\mapsto} \langle \rangle \\ \mathbf{HT}_{A \times B}(M) &\coloneqq M \overset{*}{\mapsto} \langle M_{1}, M_{2} \rangle \ \mathrm{and} \ \mathbf{HT}_{A}(M_{1}) \ \mathrm{and} \ \mathbf{HT}_{B}(M_{2}) \\ \mathbf{HT}_{A \to B}(M) &\coloneqq M \overset{*}{\mapsto} \lambda x. M' \ \mathrm{and} \ \mathbf{HT}_{A}(N) \Rightarrow \mathbf{HT}_{B}(M'[N/x]) \end{split}$$

Conjecture (?Hereditary Termination of STLC):

If $\emptyset \vdash M : A$, then $\mathbf{HT}_A(M)$.

Proof:

• Case Lam:

```
IH2: if \emptyset = \emptyset, x : A and \emptyset, x : A \vdash M : B, then \mathbf{HT}_B(M) wts. \mathbf{HT}_{A \to B}(\lambda x.M)???
```

Conjecture (?Hereditary Termination of STLC):

If $\emptyset \vdash M : A$, then $\mathbf{HT}_A(M)$.

Proof:

• Case Lam:

IH2: if $\emptyset = \emptyset, x : A$ and $\emptyset, x : A \vdash M : B$, then $\mathbf{HT}_B(M)$ wts. $\mathbf{HT}_{A \to B}(\lambda x.M)$???

!! Need to generalize over Γ , but \mathbf{HT} applies only to closed terms!

Given subst γ from variables to terms, we say $\Gamma' \vdash \gamma : \Gamma$ iff $\forall x : A \in \Gamma, \Gamma' \vdash \gamma(x) : A$.

Subst Lemma:

$$\frac{\Gamma' \vdash \gamma : \Gamma \quad \Gamma \vdash M : A}{\Gamma' \vdash M[\gamma] : A}$$

Given subst γ from variables to terms, we say $\Gamma' \vdash \gamma : \Gamma$ iff $\forall x : A \in \Gamma, \Gamma' \vdash \gamma(x) : A$.

Subst Lemma (specialized):

$$\frac{\emptyset \vdash \gamma : \Gamma \quad \Gamma \vdash M : A}{\emptyset \vdash M[\gamma] : A}$$

Given subst γ from variables to terms, we say $\Gamma' \vdash \gamma : \Gamma$ iff $\forall x : A \in \Gamma, \Gamma' \vdash \gamma(x) : A$.

Idea: adopting *subst lemma* to **HT**,

$$\frac{\mathbf{HT}_{\Gamma}(\gamma) \quad \Gamma \gg M \in A}{\mathbf{HT}_{A}(M[\gamma])}$$

where $\mathbf{HT}_{\Gamma}(\gamma) := \forall x : A \in \Gamma, \mathbf{HT}_{A}(x[\gamma])$

Given subst γ from variables to terms, we say $\Gamma' \vdash \gamma : \Gamma$ iff $\forall x : A \in \Gamma, \Gamma' \vdash \gamma(x) : A$.

Idea: adopting subst lemma to HT,

$$\Gamma \gg M \in A := \mathbf{HT}_{\Gamma}(\gamma) \Rightarrow \mathbf{HT}_{A}(M[\gamma])$$

where $\mathbf{HT}_{\Gamma}(\gamma) := \forall x : A \in \Gamma, \mathbf{HT}_{A}(x[\gamma])$

Hereditary Termination, finally

Theorem (FTLR of **HT**, or Hereditary Termination of STLC):

If $\Gamma \vdash M : A$, then $\Gamma \gg M \in A$. (where $\Gamma \gg M \in A \coloneqq \mathbf{HT}_{\Gamma}(\gamma) \Rightarrow \mathbf{HT}_{A}(M[\gamma])$)

Proof:

• Case $\operatorname{Var}(\Gamma \gg \alpha \in A)$: By assumption, $\alpha : A \in \Gamma$. Assume $\operatorname{\mathbf{HT}}_{\Gamma}(\gamma)$, wts. $\operatorname{\mathbf{HT}}_{A}(\alpha[\gamma])$. So $\gamma(\alpha) = M$ s.t. $\operatorname{\mathbf{HT}}_{A}(M)$. But, $\alpha[\gamma] = \gamma(\alpha)$. We are done.

Hereditary Termination, finally

Theorem (FTLR of **HT**, or Hereditary Termination of STLC):

If $\Gamma \vdash M : A$, then $\Gamma \gg M \in A$. (where $\Gamma \gg M \in A := \mathbf{HT}_{\Gamma}(\gamma) \Rightarrow \mathbf{HT}_{A}(M[\gamma])$)

Proof:

• Case Lam $(\Gamma \gg \lambda x.M : A \rightarrow B)$:

Assume $\mathbf{HT}_{\Gamma}(\gamma)$, wts. $\mathbf{HT}_{A\to B}(\lambda x.M[\gamma])$. By definition of $\mathbf{HT}_{A\to B}$, assume $\mathbf{HT}_A(N)$, wts. $\mathbf{HT}_B(M[\gamma][N/x])$.

By I.H., $\forall \gamma', \mathbf{HT}_{\Gamma,x:A}(\gamma')$ implies $\mathbf{HT}_B(M[\gamma'])$. Specializing I.H. by $\gamma' := \gamma, x \to N$, and note that $\mathbf{HT}_{\Gamma,x:A}(\gamma')$, we have $\mathbf{HT}_B(M[\gamma, x \to N])$, and $\mathbf{HT}_B(M[\gamma][N/x])$.

Idea: apply γ from premises (by I.H.) to the conclusion.

From Termination to (Weak) β -Normalizing

Termination: $head \beta$ -reduction of well-typed closed terms stops at canonical forms (value).

Normalization: $full \beta$ -reduction of well-typed *open terms* stops at β -normal forms (can not step anymore).

$$\frac{M_2 \xrightarrow{\beta} M_2'}{M_1 M_2 \xrightarrow{\beta} M_1 M_2'} \text{APP2} \qquad \frac{M \xrightarrow{\beta} M'}{\lambda x. M \xrightarrow{\beta} \lambda x. M'} \text{ABS}$$

$$\frac{M_1 \xrightarrow{\beta} M_1'}{\langle M_1, M_2 \rangle \xrightarrow{\beta} \langle M_1', M_2 \rangle} \text{PRODL} \quad \frac{M_2 \xrightarrow{\beta} M_2'}{\langle M_1, M_2 \rangle \xrightarrow{\beta} \langle M_1, M_2' \rangle} \text{PRODR}$$

Normalization of STLC, formally

Normalization: $full \beta$ -reduction of well-typed *open terms* stops at β -normal forms (can not step anymore).

Formally, define
$$\mathbf{norm}_{\beta}(M) \coloneqq \exists N, M \stackrel{*}{\underset{\beta}{\longrightarrow}} N \text{ and } N \xrightarrow{\beta}$$

Theorem (Normalization of STLC):

If $\Gamma \vdash M : A$, then $\mathbf{norm}_{\beta}(M)$.

by proving the following lemma

From HT to HN: Kripke LR

 $\mathbf{HT}_A(M)$ only applies to *closed terms*, while \mathbf{HN} must deal with open terms.

Solution (Kripke LR): index over free variables (Δ), or "possible worlds".

 $\mathbf{HN}_A^{\Delta}(M)$ is indexed by variable contexts Δ and types A on well-formed terms $\Delta \vdash M : A$.

Hereditary Normalizing (HN)

$$\begin{aligned} \mathbf{H}\mathbf{T}_{\mathrm{ans}}(M) &\coloneqq M \overset{*}{\mapsto} \mathrm{yes} \ \mathrm{or} \ M \overset{*}{\mapsto} \mathrm{no} \quad \mathbf{H}\mathbf{T}_{1}(M) \coloneqq M \overset{*}{\mapsto} \langle \rangle \\ \mathbf{H}\mathbf{T}_{A \times B}(M) &\coloneqq M \overset{*}{\mapsto} \langle M_{1}, M_{2} \rangle \ \mathrm{and} \ \mathbf{H}\mathbf{T}_{A}(M_{1}) \ \mathrm{and} \ \mathbf{H}\mathbf{T}_{B}(M_{2}) \\ \mathbf{H}\mathbf{T}_{A \to B}(M) &\coloneqq M \overset{*}{\mapsto} \lambda x.M' \ \mathrm{and} \ \mathbf{H}\mathbf{T}_{A}(N) \Rightarrow \mathbf{H}\mathbf{T}_{B}(M'[N/x]) \\ \mathbf{H}\mathbf{N}_{\mathrm{ans}}^{\Delta}(M) &\coloneqq \mathbf{norm}_{\beta}(M) \quad \mathbf{H}\mathbf{N}_{1}^{\Delta}(M) &\coloneqq \mathbf{norm}_{\beta}(M) \\ \mathbf{H}\mathbf{N}_{A \times B}^{\Delta}(M) &\coloneqq \mathbf{H}\mathbf{N}_{A}^{\Delta}(M.1) \ \mathrm{and} \ \mathbf{H}\mathbf{N}_{B}^{\Delta}(M.2) \\ \mathbf{H}\mathbf{N}_{A \to B}^{\Delta}(M) &\coloneqq \forall \Delta' \leq \Delta, \mathbf{H}\mathbf{N}_{A}^{\Delta'}(N) \Rightarrow \mathbf{H}\mathbf{N}_{B}^{\Delta'}(MN) \end{aligned}$$

HN vs HT

• $\mathbf{HN}_{A\times B}^{\Delta}(M)\coloneqq\mathbf{HN}_{A}^{\Delta}(M.1)$ and $\mathbf{HN}_{B}^{\Delta}(M.2)$ vs $\mathbf{HT}_{A\times B}(M)\coloneqq M \overset{*}{\mapsto} \langle M_1, M_2 \rangle$ and $\mathbf{HT}_{A}(M_1)$ and $\mathbf{HT}_{B}(M_2)$

M might be a variable, so it probably won't reduce to canonical form. Define \mathbf{HN} via elimination instead of introduction.

$$\frac{\Gamma \vdash M_1 : A \quad \Gamma \vdash M_2 : B}{\Gamma \vdash (M_1, M_2) : A \times B}_{\text{PROD}}$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M.1 : A} \underbrace{\mathsf{PRJ1}}_{\mathsf{PRJ2}} \quad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M.2 : B} \underbrace{\mathsf{PRJ2}}_{\mathsf{PRJ2}}$$

HN vs HT

• $\mathbf{HN}_{A\to B}^{\Delta}(M) \coloneqq \forall \Delta' \leq \Delta, \mathbf{HN}_A^{\Delta'}(N) \Rightarrow \mathbf{HN}_B^{\Delta'}(MN)$

 $\Delta' \leq \Delta := \forall x, \Delta \vdash x : A \Rightarrow \Delta' \vdash x : A$, i.e. Δ' is an extension of Δ .

Intuitively: a function can be applied in a larger context by weakening lemma.

Lemma (Anti-Monotonicity):

If $\mathbf{HN}_A^{\Delta(M)}$ and $\Delta' \leq \Delta$, then $\mathbf{HN}_A^{\Delta'}(M)$.

Head Expansion for HN

Lemma (Head Expansion):

If $M \stackrel{*}{\mapsto} N$ and $\mathbf{HN}_A^{\Delta}(N)$, then $\mathbf{HN}_A^{\Delta}(M)$.

Proof: 👋.

 \P It suffices to show that \mathbf{HN} is closed under *head expansion* instead of *full expansion*.

FTLR of HN

Theorem (FTLR of **HN**, or Hereditary Normalizing of STLC):

If
$$\Gamma \vdash M : A$$
, then $\forall \Delta, \mathbf{HN}^{\Delta}_{\Gamma}(\gamma) \Rightarrow \mathbf{HN}^{\Delta}_{A}(M[\gamma])$.

Proof: 👋.

One Missing Step: From Hereditary- ${\mathcal P}$ to ${\mathcal P}$

Theorem (FTLR of HT)

If $\Gamma \vdash M : A$, then $\Gamma \gg M \in A$. (where $\Gamma \gg M \in A := \mathbf{HT}_{\Gamma}(\gamma) \Rightarrow \mathbf{HT}_{A}(M[\gamma])$)

Theorem (Termination of STLC)

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

One Missing Step: From Hereditary- $\mathcal P$ to $\mathcal P$

Theorem (FTLR of HT)

If $\Gamma \vdash M : A$, then $\Gamma \gg M \in A$. (where $\Gamma \gg M \in A := \mathbf{HT}_{\Gamma}(\gamma) \Rightarrow \mathbf{HT}_{A}(M[\gamma])$)

Theorem (Termination of STLC)

If $\emptyset \vdash M : \text{ans, then either } M \stackrel{*}{\mapsto} \text{yes or } M \stackrel{*}{\mapsto} \text{no.}$

Proof:

Instantiating FTLR with $\Gamma=\emptyset$ and $A={\rm ans}$, ${\bf HT}_\emptyset(\gamma)\Rightarrow {\bf HT}_A(M[\gamma])$ ${\bf HT}_\emptyset(\gamma)$ holds trivially, and $M[\gamma]=M$ because M is closed, so ${\bf HT}_A(M)$.

Now we are done by the definition of **HT**.

From HN to Normalizing?

Not so easy!

$$\begin{split} \mathbf{HN}_{A\times B}^{\Delta}(M) &\coloneqq \mathbf{HN}_A^{\Delta}(\textcolor{red}{M}.1) \text{ and } \mathbf{HN}_B^{\Delta}(\textcolor{red}{M}.2) \text{ vs } \mathbf{HT}_{A\times B}(M) \coloneqq M \overset{*}{\mapsto} \\ \langle M_1, M_2 \rangle \text{ and } \mathbf{HT}_A(M_1) \text{ and } \mathbf{HT}_B(M_2) \end{split}$$

- 1. **HT** works on closed term, thus the precondition is trivial, while **HN** is not.
- 2. HT is defined by introduction, which means we have direct information about M itself, while HN is defined by elim form like M.1.

From HN to Normalizing?

Theorem (FTLR of HN)

If $\Gamma \vdash M : A$, then $\forall \Delta, \mathbf{HN}^{\Delta}_{\Gamma}(\gamma) \Rightarrow \mathbf{HN}^{\Delta}_{A}(M[\gamma])$.

Theorem (Normalization of STLC)

If $\Gamma \vdash M : A$, then $\mathbf{norm}_{\beta}(M)$.

From HN to Normalizing?

Theorem (FTLR of HN)

If $\Gamma \vdash M : A$, then $\forall \Delta, \mathbf{HN}^{\Delta}_{\Gamma}(\gamma) \Rightarrow \mathbf{HN}^{\Delta}_{A}(M[\gamma])$.

Theorem (Normalization of STLC)

If $\Gamma \vdash M : A$, then $\mathbf{norm}_{\beta}(M)$.

Proof:

It suffices to show that

- 1. $\mathbf{HN}^{\Gamma}_{\Gamma}(\iota)$, where $\iota(x)=x$ (i.e., $\Gamma \vdash \iota : \Gamma$)
- 2. (Adaquacy) If $\Gamma \vdash M : A$ and $\mathbf{HN}_A^{\Delta}(M)$, then $\mathbf{norm}_{\beta}(M)$

$\mathbf{HN}^{\Gamma}_{\Gamma}(\iota)$

Theorem: $\forall x : A \in \Gamma, \mathbf{HN}_A^{\Gamma}(x)$

(every variable in Γ is hereditarily normalizing at its claimed type).

Proof:

By case analysis on A.

Case Ans:

Assume $\alpha : \operatorname{ans} \in \Gamma$, wts. $\mathbf{HN}_{\operatorname{ans}}^{\Gamma}(\alpha)$, which is to show $\operatorname{\mathbf{norm}}_{\beta}(\alpha)$, and it follows directly from the definition of $\operatorname{\mathbf{norm}}_{\beta}$.

$\mathbf{HN}_{\Gamma}^{\Gamma}(\iota)$

Theorem: $\forall x : A \in \Gamma, \mathbf{HN}_A^{\Gamma}(x)$ (every variable in Γ is hereditarily normalizing at its claimed type).

Proof:

By case analysis on A.

- Case Prod: Assume $\alpha: A \times B \in \Gamma$, wts. $\mathbf{HN}_{A \times B}^{\Gamma}(\alpha)$. It suffices to show $\mathbf{HN}_{A}^{\Gamma}(\alpha.1)$ and $\mathbf{HN}_{B}^{\Gamma}(\alpha.2)$.
- Case Lam $(\mathbf{HN}_{A\to B}^{\Gamma}(\alpha))$: Assume $\forall \Gamma' \leq \Gamma, \mathbf{HN}_A^{\Gamma'}(M)$. It suffices to show that $\mathbf{HN}_B^{\Gamma'}(\alpha M)$. Applying adaquacy to assumption, we have $\mathbf{norm}_{\beta}(M)$.

So, to prove $\mathbf{HN}^{\Gamma}_{\Gamma}(\iota)$

We want to show that

$$\mathbf{HN}^{\Gamma}_A(\alpha.1)$$
, $\mathbf{HN}^{\Gamma}_A(\alpha.2)$, and $\mathbf{norm}_{\beta}(M)\Rightarrow \mathbf{HN}^{\Gamma'}_A(\alpha M)$

So, to prove $\mathbf{HN}^{\Gamma}_{\Gamma}(\iota)$

We want to show that

$$\mathbf{HN}_A^{\Gamma}(\alpha.1)$$
, $\mathbf{HN}_A^{\Gamma}(\alpha.2)$, and $\mathbf{norm}_{\beta}(M)\Rightarrow \mathbf{HN}_A^{\Gamma'}(\alpha M)$

Generalize it a bit, we define neutral term $U := x \mid U.1 \mid U.2 \mid UM$ as terms that stuck regarding head reduction.

And we can define *normalizable neutral term* \mathbf{nnorm}_{β} :

$$\begin{aligned} \mathbf{nnorm}_{\beta}(x) &\coloneqq \top \\ \mathbf{nnorm}_{\beta}(U.1) &\coloneqq \mathbf{nnorm}_{\beta}(U) \quad \mathbf{nnorm}_{\beta}(U.2) &\coloneqq \mathbf{nnorm}_{\beta}(U) \\ \mathbf{nnorm}_{\beta}(UM) &\coloneqq \mathbf{nnorm}_{\beta}(U) \text{ and } \mathbf{norm}_{\beta}(M) \end{aligned}$$

And we prove that if $\mathbf{nnorm}_{\beta}(U)$, then $\mathbf{HN}^{\Delta}_A(U)$

Pas-de-deux, or the Dance of norm_{eta} and HN

Lemma (Pas-de-deux): $\forall A$ and $\Delta \vdash U, M : A$,

- 1. If $\operatorname{nnorm}_{\beta}(U)$, then $\operatorname{HN}_A^{\Delta}(U)$
- 2. If $\mathbf{HN}_A^{\Delta}(M)$, then $\mathbf{norm}_{\beta}(M)$

Proof: By induction on A,

- Case Lam:
 - 1. $(\mathbf{HN}_{A\to B}^{\Delta}(U))$ Assume $\mathbf{nnorm}_{\beta}(U)$. Let $\Delta' \leq \Delta$, it suffices to show that $\mathbf{HN}_{A}^{\Delta'}(N)$ implies $\mathbf{HN}_{B}^{\Delta'}(UN)$. By induction (2), $\mathbf{norm}_{\beta}(N)$, thus $\mathbf{nnorm}_{\beta}(UN)$. By induction (1), $\mathbf{HN}_{B}^{\Delta'}(UN)$.
 - 2. $(\mathbf{norm}_{\beta}(M))$ Assume $\mathbf{HN}_{A\to B}^{\Delta}(M)$. Let $\Delta' := \Delta, x : A \leq \Delta$, we have $\mathbf{HN}_{B}^{\Delta'}(Mx)$, and by induction (2), $\mathbf{norm}_{\beta}(Mx)$. By definition, $\mathbf{nnorm}_{\beta}(x)$, so by induction (1), $\mathbf{HN}_{A}^{\Delta'}(x)$. Then by analysis on β -reduction, $\mathbf{norm}_{\beta}(M)$.

From HN to Normalizing

Theorem (Normalization of STLC)

If $\Gamma \vdash M : A$, then $\mathbf{norm}_{\beta}(M)$.

Proof:

It suffices to show that

- 1. $\mathbf{HN}_{\Gamma}^{\Gamma}(\iota)$
- 2. (Adaquacy) If $\Gamma \vdash M : A$ and $\mathbf{HN}_A^{\Delta}(M)$, then $\mathbf{norm}_{\beta}(M)$

Both follows from the pas-de-deux lemma.

Logical Relation, generalized on ${\mathcal P}$

Conjecture If $\Gamma \vdash M : A$, then $\mathcal{P}_A^{\Gamma}(M)$.

Proof: Define LR hereditarily \mathcal{P} as $h\mathcal{P}_A^{\Delta}(M)$.

$$\begin{split} &h\mathcal{P}_1^{\Delta(M)}\coloneqq M\overset{*}{\mapsto} \langle\rangle \text{ or } M\overset{*}{\mapsto} U \text{ and } n\mathcal{P}_1^{\Delta(U)} \\ &h\mathcal{P}_{A\times B}^{\Delta}(M)\coloneqq h\mathcal{P}_A^{\Delta}(M.1) \text{ and } h\mathcal{P}_B^{\Delta}(M.2) \\ &h\mathcal{P}_{A\to B}^{\Delta}(M)\coloneqq \forall \Delta' \leq \Delta \text{, if } h\mathcal{P}_A^{\Delta'}(N) \text{, then } h\mathcal{P}_B^{\Delta'}(MN) \end{split}$$

Where $n\mathcal{P}$ (neutrally \mathcal{P}) requires that the argument terms of U to be $h\mathcal{P}$:

$$\begin{split} &n\mathcal{P}_A^{\Delta,\alpha:A}(\alpha)\coloneqq \top\\ &n\mathcal{P}_A^\Delta(U.1)\coloneqq n\mathcal{P}_{A\times B}^\Delta(U)\\ &n\mathcal{P}_B^\Delta(U.2)\coloneqq n\mathcal{P}_{A\times B}^\Delta(U)\\ &n\mathcal{P}_B^\Delta(UM)\coloneqq n\mathcal{P}_{A\to B}^\Delta(U) \text{ and } h\mathcal{P}_A^\Delta(M) \end{split}$$

Reduction Property \mathcal{P}

By concluding from our previous proof of *FTLR* and pas-de-deux, both hold for \mathcal{P} if:

- 1. $P_1^{\Delta}(\langle \rangle)$.
- 2. If $n\mathcal{P}_1^{\Delta}(U)$, then $\mathcal{P}_1^{\Delta}(U)$.
- 3. If $\mathcal{P}_A^{\Delta}(M.1)$ and $\mathcal{P}_B^{\Delta}(M.2)$, then $\mathcal{P}_{A\times B}^{\Delta}(M)$.
- 4. If $\mathcal{P}_{B}^{\Delta,x:A}(Mx)$, then $\mathcal{P}_{A\to B}^{\Delta}(M)$.

We call this kind of property reduction property. So,

Theorem (Principle of reduction property) Given reduction property \mathcal{P} , if $\Gamma \vdash M : A$, then $\mathcal{P}_A^{\Gamma}(M)$.

Conclusion

- To prove termination of STLC: logical relation HT.
- To prove normalization of STLC: Kripke-style LR HN.
- From FTLR of HN to normalization: pas-de-deux.
- LR as a general principle: reduction property.

Interesting applications:

- 1. Strong normalizing is a reduction property.
- 2. Verify safety of ill-typed programs (think *RustBelt*).
- 3. LR indexed by source types but on target terms (think *FFI*).

Related Material

- Harper, Robert. "How to (Re)Invent Tait's Method". [Link] Define Hereditary Termination \mathbf{HT}
- Harper, Robert. "Kripke-Style Logical Relations for Normalization". [Link] Define Hereditary Normalizing \mathbf{HN}
- Harper, Robert. "Strong Normalization as Transfinite Induction on Reduction". [Link]
 - Generalized LR, and an old but general approach to prove β -confluence via transfinite \rightarrow -induction (property that satisfies head expansion).
- Harper, Robert. "How to (Re)Invent Girard's Method". [Link] LR for System F.