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ATP, as a Complexity Problem

P - CFG

NP - SAT

PSPACE - TQBF

Elementary - HOL

RE - General ATP¹

¹https://www.youtube.com/watch?v=VAHyU6gHDdk
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ATP, as a PL Problem
The good old C.H. Correspondence:

Logic Side Programming Side
proposition type

proof term
proposition is true type has an inhabitant
proposition is false type does not have an inhabitant

proving a proposition finding an inhabitant
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ATP, as a PL Problem
The good old C.H. Correspondence:

Logic Side Programming Side
proposition type

proof term
proposition is true type has an inhabitant
proposition is false type does not have an inhabitant

proving a proposition finding an inhabitant

ATP is the type-inhabitation problem:

Given a proposition 𝑃 , find a term of type 𝑃 .
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How humans prove (in Lean4)

inductive Or (a b : Prop) : Prop
| inl : a → a ∨ b
| inr : b → a ∨ b
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What are these “holes”?

example: ∀ (P Q: Prop), P ∨ Q → Q ∨ P :=
  λ P Q hor => Or.elim h

    (λ hp => Or.inr ?1 )

    (λ hq => Or.inl ?2 )
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What are these “holes”?

example: ∀ (P Q: Prop), P ∨ Q → Q ∨ P :=
  λ P Q hor => Or.elim h

    (λ hp => Or.inr ?1 )

    (λ hq => Or.inl ?2 )

• Metavariable: A meta-level placeholder for an object-level term.
It might have an assigned value ( ?1 = hp ), partially assigned
( ?x [a ↦ 1] ), or completely unknown.

• Goal: Any metavariable that’s not completely assigned.
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What are these “holes”?

example: ∀ (P Q: Prop), P ∨ Q → Q ∨ P :=
  λ P Q hor => Or.elim h

    (λ hp => Or.inr ?1 )

    (λ hq => Or.inl ?2 )

? 1 : ∀(𝑃  𝑄 : Prop), ℎ𝑜𝑟 : 𝑃 ∨ 𝑄, ℎ𝑝 : 𝑃 ⊢ 𝑃

? 2 : ∀(𝑃  𝑄 : Prop), ℎ𝑜𝑟 : 𝑃 ∨ 𝑄, ℎ𝑞 : 𝑄 ⊢ 𝑄

Local Context: Available premises and the target type for this hole.
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How humans prove, alternatively

example : ∀ (P Q: Prop), P ∨ Q → Q ∨ P := by
  intro p q h
  cases h
  . case inl hp =>
    right
    exact hp
  . case inr hq =>
    left
    exact hq
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How humans prove, alternatively

⊢ ∀(𝑝, 𝑞 : Prop), 𝑝 ∨ 𝑞 → 𝑞 ∨ 𝑝 example: ∀ (P Q: Prop), P ∨ Q → Q ∨ P :=
  ?_
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How humans prove, alternatively

⊢ ∀(𝑝, 𝑞 : Prop), 𝑝 ∨ 𝑞 → 𝑞 ∨ 𝑝

𝑝 : Prop
⊢ ∀(𝑞 : Prop), 𝑝 ∨ 𝑞 → 𝑞 ∨ 𝑝

intro 𝑝

example: ∀ (P Q: Prop), P ∨ Q → Q ∨ P :=
  λ P => ?_
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Two Paradigms: term vs tactic

• Term based: giving a direct witness of type inhabitation
• Tactic based: refining the term by filling “holes” with meta-level

instructions
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How humans prove, alternatively

⟨x: T, p: P x⟩: ∃ x: T, P x
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How humans prove, alternatively

⟨x: T, p: P x⟩: ∃ x: T, P x

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 := by
  refine ⟨?_, ?_⟩
  pick_goal 2

  rfl -- closes 1st goal automatically via unification

Intuition:
1. The difficulty of constructing a proof sometimes depends on the order one

chooses to fill the holes.
2. Solving a goal might help solve another goal.
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How humans prove, alternatively

⟨x: T, p: P x⟩: ∃ x: T, P x

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 := by
  refine ⟨?_, ?_⟩
  pick_goal 2

  rfl -- closes 1st goal automatically via unification

Two Representations: A view shift from Search View to Presenta�
tion View.
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Three Views of Proofs¹

• Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical”
values.

¹Aniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, … in Lean 4.
²R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them
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E.g. “Let 𝜀 > 0. Define 𝛿 ≔ min(2𝜀2, 𝜀
5 , 1

3), …”
• Search (proof) View: The trajectory a prover (machine/human) fol-

lows, i.e. Motivated Proof².

“Let 𝜀 > 0. Let 𝛿 ≔? 1. Using lemma …, we know 𝛿 ≤ 𝜀
5 , … Therefore

we can set 𝛿 ≔ min(…).”

¹Aniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, … in Lean 4.
²R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them
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Three Views of Proofs¹

• Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical”
values.

• Search (proof) View: The trajectory a prover (machine/human)
follows, i.e. Motivated Proof².

• Kernel View: The proof term itself. Might contain metavars
(holes) if unfinished.

¹Aniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, … in Lean 4.
²R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them
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How humans prove

1. Prove a theory (either by constructing terms by hand or by using
tactics) in the Search View.
• Term based: a tree of terms (with holes) attempted
• Tactic based: a tree of tactic sequence applied
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How humans prove

1. Prove a theory (either by constructing terms by hand or by using
tactics) in the Search View.
• Term based: a tree of terms (with holes) attempted
• Tactic based: a tree of tactic sequence applied

2. Close the proof
• If term based: Kernel View proof
• If tactic based:

1. Polish the proof
2. Get a Presentation View proof (→ Kernel View)
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How humans prove

term

tactic

polished

generate
Search View

Kernel View

Kernel ViewPresentation View
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How machines prove: a historical survey of ATP

1. Brute-force term search (90s)
2. Hammer & SMT bridge (2000-)
3. Data-driven (201?-)

12 / 33



The brute-force way

The most intuitive and straightforward way.

Theorem: ∀(𝑝 𝑞 : Prop), 𝑃 ∨ 𝑄 → 𝑄 ∨ 𝑃

?_
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Mimics how humans prove by hand, sans the intuition and experi-
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The brute-force way
The most intuitive and straightforward way.

Theorem: ∀(𝑝 𝑞 : Prop), 𝑃 ∨ 𝑄 → 𝑄 ∨ 𝑃

λ p q z => Or.elim (λ h => Or.inr h) (λ h => Or.inl h)

Mimics how humans prove by hand, sans the intuition and experience.

term

tactic

polished

generate
Search View

Kernel View

Kernel ViewPresentation View

Problem: huge search space
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The hammer way

P - CFG

NP - SAT

PSPACE - TQBF

Elementary - HOL

RE - General ATP

1. Cut out a decidable fragment
(e.g. QF_uf)
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The data-driven way (The magic blackbox 😨)
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The data-driven way (The magic blackbox 😨)

sketch draft prove generate
Presentation Search Presentation Kernel
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Challenges

• Premise Selection: Which constructor/lemma to use?
A huge headache: induction!

¹Limperg and Halkjær. (CPP 2023). Aesop: White-Box Best-First Proof Search for Lean.
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Challenges

• Premise Selection: Which constructor/lemma to use?
A huge headache: induction!

• Search Space Pruning: Do not revisit the same state.
• Metavar Coupling¹ (Selection): Which goal to solve first?

¹Limperg and Halkjær. (CPP 2023). Aesop: White-Box Best-First Proof Search for Lean.
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Metavariable Coupling

Recall

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 := by
  refine ⟨?_, ?_⟩
  pick_goal 2

  rfl -- closes 1st goal automatically via unification

17 / 33



Metavariable Coupling

Recall

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 :=

  ⟨?1, ?2 -- fill with rfl ⟩

17 / 33



Metavariable Coupling

Recall

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 :=

  ⟨ ?1 -- 3 by 𝑛 = 3 ∼ 3 = 3 , rfl⟩

17 / 33



Metavariable Coupling

Recall

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 :=

  ⟨ ?1 -- 3 by 𝑛 = 3 ∼ 3 = 3 , rfl⟩

There’s a dependency between ?1  and ?2 ¹.
So, the algorithm must be able to …

¹Note that while the term “metavar coupling” was first introduced by aesop, the concept itself is not new. It’s a natural conse-
quence of dependent unification.
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Metavariable Coupling

Recall

theorem exists_nat_eq_3: ∃ n: Nat, n = 3 :=

  ⟨ ?1 -- 3 by 𝑛 = 3 ∼ 3 = 3 , rfl⟩

There’s a dependency between ?1  and ?2 ¹.
So, the algorithm must be able to …
1. keep track of the dependencies and update them during unification.
2. choose wisely which metavariable to solve first.

¹Note that while the term “metavar coupling” was first introduced by aesop, the concept itself is not new. It’s a natural conse-
quence of dependent unification.
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Case Study

• Canonical: Brute-force search, done smartly
• Hammer: When type theory based reasoning meets solvers
• DSP (LLM): The panacea, but at what cost?
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Case Study: Canonical

Conventional term-based ID-DFS, with a special type theory.
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Case Study: Canonical

Conventional term-based ID-DFS, with a special type theory.

Core idea: maintain 𝛽-normal 𝜂-long form, even through substitu-
tion, for free.

(𝜆𝑥.𝐶 𝑥) 1 🚫 𝛽-reducible
𝑓 : 𝜏1 → 𝜏2 🚫 𝜂-expandable
𝜆𝑥.𝑓𝑥 : 𝜏1 → 𝜏2 ✅ 𝛽-normal 𝜂-long
(𝑓𝑔)ℎ 🚫 𝜂-expandable: (𝜆𝑥.𝑓𝑔𝑥)ℎ, i.e. no partial app
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It solves the state pruning problem.

All 𝛼𝛽𝜂-equiv terms are syntactically equal! (𝛽n𝜂l + ln)
A hashset of seen terms is enough. No normalization.
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It (partly) simplifies the premise selection problem.

E.g. ℎ ? 1 with local context 𝐶1 : 𝑎 → 𝑇 , 𝐶2 : 𝑎 → 𝑏 → 𝑇 , 𝐷1 : 𝑎 →
𝑈 ⊢ 𝑇

The only two viable candidates are
• 𝐶1: ℎ (𝐶1 ? 2), and
• 𝐶2: ℎ (𝐶1 ? 2 ? 3)
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It (partly) solves the premise selection problem.

E.g. id  ? 1 ? 2 with local context 𝐶1 : 𝑎 → 𝑇 , 𝐶2 : 𝑎 → 𝑏 → 𝑇 , 𝐷1 :
𝑎 → 𝑈 ⊢? 𝑡

We have three candidates.
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It (partly) solves the premise selection problem.

E.g. id  ? 1 ? 2 with local context 𝐶1 : 𝑎 → 𝑇 , 𝐶2 : 𝑎 → 𝑏 → 𝑇 , 𝐷1 :
𝑎 → 𝑈 ⊢? 𝑡

If, we are not enforcing 𝛽n𝜂l form, it can be a lambda! (We always
have 𝑛 + 1 choices)

Worse, id  (Π𝑥:𝑎 ? 1) ? 2 ? 3!
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It (partly) solves the premise selection problem.

E.g. id  ? 1 ? 2 with local context 𝐶1 : 𝑎 → 𝑇 , 𝐶2 : 𝑎 → 𝑏 → 𝑇 , 𝐷1 :
𝑎 → 𝑈 ⊢? 𝑡

But now that we are enforcing 𝛽n𝜂l, it’s impossible for a metavar to
be a lambda:

? 1 : 𝜏1 → 𝜏2 => 𝜆𝑥 : 𝜏1.(? 1 : 𝜏2)
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Case Study: Canonical

Maintain 𝛽-normal 𝜂-long form, even through substitution, for free.

Why? It enforces static arity, enabling usage of efficient data struc-
tures.

Always full app: { head: Term, args: Array Term }
Partial app: { lhs: Term, rhs: { lhs: Term, rhs: ... }}
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Case Study: Canonical, and its Achilles’ Heel

Induction is a big problem.
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Case Study: Canonical, and its Achilles’ Heel

Induction is a big problem.

Nat.rec : {motive : Nat → Type} →
  motive Nat.zero → ((n : Nat) → motive n → motive n.succ) →

(t : Nat) → motive  t

motive  is universally quantified. It’s a candidate for every hole.

24 / 33



Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).
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Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

1. Export subgoals to external solvers, often making dependent
types opaque

2. Filter out a list of likely related theorems and send them to the
solver

3. Replaying external proofs back to the type theory via reconstruc-
tion
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Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Hammer ATP
Automation push-button varies

Expressiveness limited to decidable fragment full support for DT and HoL
Trust longer trust chain kernel-checked directly

Performance highly optimized slow in large libs or proofs
Visibility hidden in the solver full trace available
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Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Hammer ATP
Automation push-button varies

Expressiveness limited to decidable fragment full support for DT and HoL
Trust longer trust chain kernel-checked directly

Performance highly optimized slow in large libs or proofs
Visibility hidden in the solver full trace available

Trade-off between expressiveness and automation.
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Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Challenges:

1. Premise Selection: depending on other solutions (adhoc heuris-
tics, reinforcement learning, etc.)
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Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Challenges:

1. Premise Selection: depending on other solutions (adhoc heuris-
tics, reinforcement learning, etc.)

2. Induction: no support (recursors are dependently typed)
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Case Study: DSP (LLM)

The good:

1. It works magically! (∼ 50% success rate on some datasets)
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Case Study: DSP (LLM)

The good:

1. It works magically! (∼ 50% success rate on some datasets)
2. Somewhat explainable: the informal proof sketch is human-

readable.
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Case Study: DSP (LLM)

The ugly:

• Limited to tactic based approach due to the nature of DSP, thus
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with premise selection, and
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Case Study: DSP (LLM)

The ugly:

• Limited to tactic based approach due to the nature of DSP, thus
• Need to tackle with tactic selection, a slightly different problem

with premise selection, and
• Need to learn how to parametrize the tactic.
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Case Study: DSP (LLM)

The bad:

1. Neural networks are not explainable.
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1. Neural networks are not explainable.
2. Insufficient dataset: most datasets are synthetic, and the real-

world datasets are not large enough.
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Case Study: DSP (LLM)

The bad:

1. Neural networks are not explainable.
2. Insufficient dataset: most datasets are synthetic, and the real-

world datasets are not large enough.
3. Unreliable benchmarking: data leak problem

• Avoidable: training set pollution
• Unavoidable: prior knowledge from natural language pre-

training
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Best of all three worlds

1. Symbolic approach with a solver heart
Regain the power of domain specific tactics.
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Best of all three worlds

1. Symbolic approach with a solver heart
Regain the power of domain specific tactics.

2. Symbolic approach with a neuro heart
(Domain-specific) learning based premise/metavar selection.

3. Neuro approach with a symbolic heart
Explainable & reliable logic core.
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Open problems

1. Premise Selection
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Open problems

1. Premise Selection
2. Lemma Discovery: reuse proofs, generalizing theorems

Might help with the induction headache.
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