Navigating Proof Search in Theorem Provers

A Brief Tour of ATP in Type Theory

Presented by Yanning Chen @ ProSE Seminar

ATP, as a Complexity Problem

thttps://www.youtube.com/watch?v=VAHyU6gHDdk

https://www.youtube.com/watch?v=VAHyU6gHDdk

ATP, as a Complexity Problem

thttps://www.youtube.com/watch?v=VAHyU6gHDdk

https://www.youtube.com/watch?v=VAHyU6gHDdk

ATP, as a Complexity Problem

&

PSPACE - TOBF

thttps://www.youtube.com/watch?v=VAHyU6gHDdk

https://www.youtube.com/watch?v=VAHyU6gHDdk

ATP, as a Complexity Problem

PSPACE - TOBF

Elementary - HOL

thttps://www.youtube.com/watch?v=VAHyU6gHDdk

https://www.youtube.com/watch?v=VAHyU6gHDdk

ATP, as a Complexity Problem

PSPACE - TOBF

Elementary - HOL

1 RE - General ATP

thttps://www.youtube.com/watch?v=VAHyU6gHDdk

https://www.youtube.com/watch?v=VAHyU6gHDdk

ATP, as a PL Problem

The good old C.H. Correspondence:

Logic Side Programming Side
proposition type
proof term

proposition is true

type has an inhabitant

proposition is false

type does not have an inhabitant

proving a proposition

finding an inhabitant

ATP, as a PL Problem

The good old C.H. Correspondence:

Logic Side Programming Side
proposition type
proof term
proposition is true type has an inhabitant

proposition is false | type does not have an inhabitant

proving a proposition finding an inhabitant

ATP is the type-inhabitation problem:

Given a proposition P, find a term of type P.

How humans prove (in Lean4)

inductive Or (a b : Prop) : Prop
| inl : a-avb
| inr : b-a v b

How humans prove (in Lean4)

Or.inl : V {a b : Prop}, a-avb
Or.inr : V {a b : Prop}, b-avb
Or.elim : YV {a b c : Prop}, avb-(a-c)-(b-=c)-c

How humans prove (in Lean4)

Or.inl : V {a b : Prop}, a-avb
Or.inr : V {a b : Prop}, b-avb
Or.elim : YV {a b c : Prop}, avb-(a-c)-(b-=c)-c

Theorem: V(p ¢ : Prop),PVQ - QV P

example: V (P Q: Prop), PvQ-QvVvP:=
?

How humans prove (in Lean4)

Or.inl : V {a b : Prop}, a-avb
Or.inr : V {a b : Prop}, b-avb
Or.elim : YV {a b c : Prop}, avb-(a-c)-(b-=c)-c

Theorem: V(p ¢ : Prop),PVQ - QV P

example: V (P Q: Prop), PvQ-QvVvP:=
AP Q hor == 7_

How humans prove (in Lean4)

Or.inl : V {a b : Prop}, a-avb
Or.inr : V {a b : Prop}, b-avb
Or.elim : YV {a b c : Prop}, avb-(a-c)-(b-=c)-c

Theorem: V(p ¢ : Prop),PVQ - QV P

example: V (P Q: Prop), PvQ-QvVvP:=
A P Q hor = 0Or.elim hor ? 7?7

How humans prove (in Lean4)

Or.inl : VY {a b : Prop}, a-avb
Or.inr : Y {a b : Prop}, b-avb
Or.elim : V {a b c : Prop}, avb-(a-c)-(b-c)->c

Theorem: V(p q: Prop),PVQ@ —- QV P

example: V (P Q: Prop), Pv Q-QvVv P :=
A P Q hor => Or.elim hor
(A hp == 7?7)
(A hqg => 7?7)

How humans prove (in Lean4)

Or.inl : VY {a b : Prop}, a-avb
Or.inr : Y {a b : Prop}, b-avb
Or.elim : V {a b c : Prop}, avb-(a-c)-(b-c)->c

Theorem: V(p q: Prop),PVQ@ —- QV P

example: V (P Q: Prop), Pv Q-QvVv P :=
A P Q hor => Or.elim hor
(A hp => Or.inr ?)
(A hg => Or.inl ?)

How humans prove (in Lean4)

Or.inl : VY {a b : Prop}, a-avb
Or.inr : Y {a b : Prop}, b-avb
Or.elim : V {a b c : Prop}, avb-(a-c)-(b-c)->c

Theorem: V(p q: Prop),PVQ@ —- QV P

example: V (P Q: Prop), Pv Q-QvVv P :=
A P Q hor => Or.elim hor
(A hp => Or.inr hp)
(A hqg => Or.inl hq)

What are these “holes”?

example: V (P Q: Prop), PvQ-Qv P :=
AP Q hor == 0Or.elim h

(A hp => Or.inr)

(A hg => Or.inl (?2))

What are these “holes”?

example: V (P Q: Prop), PvQ-Qv P :=
AP Q hor == 0Or.elim h

(A hp => Or.inr)

(A hg => Or.inl (?2))

- Metavariable: A meta-level placeholder for an object-level term.
It might have an assigned value (?1 = hp), partially assigned
(?x [a » 1]), or completely unknown.

« Goal: Any metavariable that’s not completely assigned.

What are these “holes”?

example: V (P Q: Prop), PvQ-Qv P :=
AP Q hor == 0Or.elim h

(A hp => Or.inr)

(A hg => Or.inl (?2))

71 : hy : PV Q hy,: PHP
72 hy : PV QL h, : QFQ

Local Context: Available premises and the target type for this hole.

How humans prove, alternatively

example : V (P Q: Prop), Pv Q-QvVv P := by
intro p g h
cases h
. case inl hp =>
right
exact hp
. case 1nr hqg =>
left
exact hg

How humans prove, alternatively

[l—‘v’(p,q:Prop),qu—)qu] example: V (P Q: Prop), PvQ-QvVvP:=
?

How humans prove, alternatively

[l—‘v’(p,q:Prop),qu—)qu] example: V (P Q: Prop), PvQ-QvVvP:=

= 7
, [p:Prop } AP => g
introp

FV(q:Prop),pVqg—qVp

How humans prove, alternatively

[l—‘v’(p,q:Prop),qu—)qu] example: V (P Q: Prop), PvQ-QvVvP:=

AP Q=7
, [p : Prop } _
introp

FV(q:Prop),pVqg—qVp

: P
intro q|_(> [p, 4:IoP J

FpVg—qVp

How humans prove, alternatively

(l—‘v’(p,q:Prop),qu—)qu) example: V (P Q: Prop), PvQ-QvVvP:=

AP Q hor => 7
. [p : Prop]
introp

FV(q:Prop),pVqg—qVp

: P
introq|_(>[p’q rop

FpVqg—qVp

p,q : Prop
introh h:pVq

FqVp

How humans prove, alternatively

(l—‘v’(p,q:Prop),qu—)qu) example: V (P Q: Prop), PvQ-QvVvP:=
AP Q hor => 0Or.elim h

intro |_(> p - Prop _
P (A hp => ?)

FV(q:Prop),pVqg—qVp
(A hq =>7?_)

‘P)
introq|_(>[p’q rop

FpVqg—qVp

intro h|_(>

caseshl |

How humans prove, alternatively

(I— ‘v’(p,q:Prop),qu—)qu)

_ L[p : Prop]
introp

FV(q:Prop),pVqg—qVp

P)
intro q|_(>[p7 q-+rop

FpVqg—qVp

intro h|_(>

FqVp Fp
caseshlL_ . ~— — -
p,q : Prop p,q : Prop
h,:q L | h:q
FqVp Fgq

example: V (P Q: Prop), PvQ-QvVvP:

A P Q hor => 0Or.elim hor
(A hp => Or.inr ?)
(A hqg => 0Or.inl ?)

How humans prove, alternatively

(I— ‘v’(p,q:Prop),qu—)qu)

FV(q:Prop),pVqg—qVp

_ L[p : Prop
introp

|

: P
intro q|_(>[p7 q-+rop

FpVqg—

N\

qVvVp,

intro h|_(>

caseshl |

example: V (P Q: Prop), PvQ-QvVvP:

A P Q hor => 0Or.elim hor
(A hp => Or.inr hp)
(A hg == Or.inl hq)

Two Paradigms: term vs tactic

- Term based: giving a direct witnhess of type inhabitation
« Tactic based: refining the term by filling “holes” with meta-level
Instructions

How humans prove, alternatively

(x: T, p: Px): 3 x: T, Px

How humans prove, alternatively

(x: T, p: Px): 3 x: T, Px

theorem exists nat eq 3: 3 n: Nat, n =3 = ...

How humans prove, alternatively
(x: T, p: Px): 3 x: T, Px

theorem exists nat eq 3: 3 n: Nat, n = 3 := by
refine (3, 7)
rfl

How humans prove, alternatively
(x: T, p: Px): 3 x: T, Px

theorem exists nat eq 3: 3 n: Nat, n = 3 := by

refine ((3 -- magical num?], ?)

rfl

How humans prove, alternatively
(x: T, p: Px): 3 x: T, Px

theorem exists nat eq 3: 3 n: Nat, n = 3 := by
refine (? , 7)
pick goal 2
rfl

How humans prove, alternatively

(x: T, p: Px): 3 x: T, PX

theorem exists nat eq 3: 3 n: Nat, n = 3 := by
refine (? , 7)

pick goal 2

rfl -- closes 1lst goal automatically via unification

Intuition:

1. Thedifficulty of constructing a proof sometimes depends onthe orderone
chooses to fill the holes.

2. Solving a goal might help solve another goal.

How humans prove, alternatively
(x: T, p: Px): 3 x: T, Px

theorem exists nat eq 3: 34 n: Nat, n = 3 := by
refine (? , 7)
pick goal 2

rfl -- closes 1lst goal automatically via unification

Two Representations: A view shift from Search View to Presenta-
tion View.

Three Views of Proofs*

- Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical”
values.

tAniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, ... in Lean 4.
2R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them

Three Views of Proofs*

- Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical”

values.

E.g. “Lete > 0. Define § := min (22, £, 1), ...”

tAniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, ... in Lean 4.

2R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them

Three Views of Proofs*

- Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical” values.

E.g. “Lete > 0. Define 6 := min(2¢2, £, %), ..”
« Search (proof) View: The trajectory a prover (machine/human) fol-

lows, I.e. Motivated Proof?.

“Let ¢ > 0. Let § :=7 1. Using lemma ..., we know ¢ < £, ... Therefore
we can set § := min(...).”

tAniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, ... in Lean 4.
2R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them

Three Views of Proofs*

- Presentation View: Polished proof for presentation (natural lan-
guage) or verification (machine readable). Contains “magical”
values.

- Search (proof) View: The trajectory a prover (machine/human)
follows, i.e. Motivated Proof?.

« Kernel View: The proof term itself. Might contain metavars
(holes) if unfinished.

tAniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, ... in Lean 4.
2R. L. Morris. Motivated Proofs: What They Are, Why They Matter and How to Write Them

How humans prove

1. Prove atheory (either by constructing terms by hand or by using
tactics) in the Search View.
« Term based: a tree of terms (with holes) attempted
« Tactic based: a tree of factic sequence applied

How humans prove

1. Prove atheory (either by constructing terms by hand or by using
tactics) in the Search View.
« Term based: a tree of terms (with holes) attempted
« Tactic based: a tree of factic sequence applied
2. Close the proof
 If term based: Kernel View proof
o If tactic based:
1. Polish the proof
2. Get a Presentation View proof (— Kernel View)

How humans prove

term

Search View _
‘ tactic

\

polished

/4

> Kernel View

Presentation View

denerate

> Kernel View

How machines prove: a historical survey of ATP

1. Brute-force term search (90s)
2. Hammer & SMT bridge (2000-)
3. Data-driven (2017?-)

The brute-force way

The most intuitive and straightforward way.

Theorem: V(p ¢ : Prop), PVQ@ - QV P

?

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ@ - QV P
ApQqh=>7_

The brute-force way

The most intuitive and straightforward way.

Theorem: V(p ¢ : Prop), PVQ@ - QV P

Apqh=>0r.inl ?_O

The brute-force way

The most intuitive and straightforward way.

Theorem: V(p ¢ : Prop), PVQ@ - QV P

Apqh=>0r.inr ?_O

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ@ - QV P
Apqh=>0r.elim ? 7?7

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ@ - QV P
Apqgz=>0r.elim (Ah =7) (Ah = 7))

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ@ - QV P
Apqgqz=>0r.elim (A h = Or.inr h) (A h => Or.inl h)

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ@ - QV P
Apqgqz=>0r.elim (A h = Or.inr h) (A h => Or.inl h)

Mimics how humans prove by hand, sans the intuition and experi-
ence.

The brute-force way

The most intuitive and straightforward way.

Theorem: V(p ¢ : Prop),PVQ - QV P
Apqgz=>0r.eltim (A h => 0Or.inr h) (A h => 0r.inl h)

Mimics how humans prove by hand, sans the intuition and experience.

term
> Kernel View

Search View
tactic generate

> Presentation View -------------3 > Kernel View

polished

The brute-force way

The most intuitive and straightforward way.
Theorem: V(p ¢ : Prop), PVQ — QV P
Apqz=>0r.elim (A h => Or.inr h) (A h => 0r.inl h)

Mimics how humans prove by hand, sans the intuition and experience.

term
> Kernel View

Search View
tactic generate

> Presentation View ------------ > Kernel View

polished

Problem: huge search space

The hammer way

* * 1. Cut out a decidable fragment
“’i (e.g. QF _uf)

RE

The hammer way

* * 1. Cut out a decidable fragment
(e.g. QF _uf)
2. Find out related theorems

RE

The hammer way
1. Cut out a decidable fragment
(e.g. QF _uf)
2. Find out related theorems
3. Send them to a solver

RE

The hammer way

1. Cut out a decidable fragment
e (e.g. QF _uf)
2. Find out related theorems
. Send them to a solver

4. Reconstruct the proof

W

RE

The hammer way

&

W

. Cut out a decidable fragment

(e.g. OF _uf)

. Find out related theorems
. Send them to a solver
. Reconstruct the proof

Kernel View
embed

External Solver
reconstruct

~

Kernel View

The hammer way

&

W

. Cut out a decidable fragment

(e.g. OF _uf)

. Find out related theorems
. Send them to a solver
. Reconstruct the proof

Kernel View
embed

External Solver
reconstruct

~

Kernel View

The data-driven way (The+ A

Formal sketch Verified formal proof
Statement Informal proof have cl: “1%28 = nx4”~ s
We know that gcd(a, b) - lcm(a, b) = ab, NELES 28808 it Mo
If gcd(n, 4) =1 and hence 1 - 28 =gn El) () <proof> by (smt (z3) prod gecd lcm nat)
Iem(n, 4) = 28, then have c2: “n = 1*28/4" then have c2: “n = 1*28/4"
(m, 4) . Thenn=1-28/4=17, Y fras
show that nis 7. A vvvotvvovu B BN oo it STl N ... y ..
 completing the proof. M - then show ?thesis . then show ?thesis
.. oS o
H 2 s

Off-the-shelf

Prover

Informal
Proof Writer

3B

[

Draft informal proof Generate formal sketch Prove remaining gaps

The data-driven way (The+ A)

Formal sketch Verified formal proof
Statement Informal proof have cl: “1%28 = n*4” have cl: “1*28 = n*4”
We know that ged(a, b) - lem(a, b) = ab, g e uALng Baons
If ged(n, 4) =1 and heicgﬁ“.' 28a=g: Sf M Sl <proof> by (smt (2z3) prod gecd lem nat)
— then have c2: “n = 1*28/4" then have c2: “n = 1*28/4"
lem(n, 4) _28, Thenn — 1.28/4 =7, SR ;
show thatnis 7. e L | | g et NS SRR I ... TR~
 completing the proof. M - then show ?thesis . then show ?thesis
.. T s
A : S
Informal Off-the-shelf
______ N Proof Writer | Prover
=% B 70%
Draft informal proof Generate formal sketch Prove remaining gaps
sketch draft prove generate

—— Presentation — Search —— Presentation ---* Kernel

Challenges

« Premise Selection: Which constructor/lemma to use?
A huge headache: induction!

iLimperg and Halkjeer. (CPP 2023). Aesop: White-Box Best-First Proof Search for Lean.

Challenges

« Premise Selection: Which constructor/lemma to use?
A huge headache: induction!
- Search Space Pruning: Do not revisit the same state.

iLimperg and Halkjeer. (CPP 2023). Aesop: White-Box Best-First Proof Search for Lean.

Challenges

« Premise Selection: Which constructor/lemma to use?
A huge headache: induction!
- Search Space Pruning: Do not revisit the same state.
- Metavar Coupling® (Selection): Which goal to solve first?

iLimperg and Halkjeer. (CPP 2023). Aesop: White-Box Best-First Proof Search for Lean.

Metavariable Coupling
Recall

theorem exists nat eq 3: 3 n: Nat, n = 3 := by
refine (7 , ?)
pick goal 2

rfl -- closes 1lst goal automatically via unification

Metavariable Coupling
Recall

theorem exists nat eq 3: 3 n: Nat, n = 3 :=

(?1, (722 -- fill with rft)

Metavariable Coupling
Recall

theorem exists nat eq 3: 3 n: Nat, n = 3 :=

(?1 -- 3 by n=3~3=3, rfl)

Metavariable Coupling

Recall

theorem exists nat eq 3: 3 n: Nat, n = 3 :=

(?1 -- 3 by n=3~3=3, rfl)

There’s a dependency between ?1 and 2?2 1.
So, the algorithm must be able to ...

1Note that while the term “metavar coupling” was first introduced by aesop, the concept itself is not new. It’s a natural conse-
quence of dependent unification.

Metavariable Coupling

Recall

theorem exists nat eq 3: 4 n: Nat, n =3 :=

(?1 -- 3 by n=3~3=3, rfl)

There’s a dependency between ?1 and 7?2 1%,
So, the algorithm must be able to ...

1. keeptrack of the dependencies and update them during unification.

1Note that while the term “metavar coupling” was first introduced by aesop, the concept itself is not new. It’s a natural conse-
quence of dependent unification.

Metavariable Coupling
Recall

theorem exists nat eq 3: 3 n: Nat, n =3 :=

(?1 -- 3 by n=3~3=3, rfl)

There’s a dependency between ?1 and ?2 1.
So, the algorithm must be able to ...

1. keep track of the dependencies and update them during unification.
2. choose wisely which metavariable to solve first.

1Note that while the term “metavar coupling” was first introduced by aesop, the concept itself is not new. It’s a natural conse-
quence of dependent unification.

Case Study

- Canonical: Brute-force search, done smartly
« Hammer: When type theory based reasoning meets solvers
« DSP (LLM): The p a, but at what cost?

Case Study: Canonical

Conventional term-based ID-DFS, with a special type theory.

Case Study: Canonical

Conventional term-based ID-DFS, with a special type theory.

Core idea: maintain g-normal n-long form, even through substitu-
tion, for free.

(Azx.C x) 1 © B-reducible
fim =T © n-expandable
Ax.fr:m — 79 @ B-normal n-long

(fg)h © n-expandable: (Az.fgz)h, i.e. no partial app

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.
Why? It solves the state pruning problem.

All aBn-equiv terms are syntactically equal! (6nnl + Ln)
A hashset of seen terms is enough. No normalization.

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.

Why? It (partly) simplifies the premise selection problem.

E.g. h 71 withlocalcontextC, :a - T,Cy:a—b—T,D; :a —
UFT

The only two viable candidates are
« Ci:h (C; 72),and
« Coih (C; 72 73)

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.
Why? It (partly) solves the premise selection problem.

E.g.id 71 72 with localcontextC, :a - T,C, :a — b —T,D; :
a— U7t

We have three candidates.

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.
Why? It (partly) solves the premise selection problem.

E.g.id 71 72 with localcontextC, :a - T,C, :a — b —T,D; :
a— U7t

If, we are not enforcing gnnl form, it can be a lambda! (We always
have n + 1 choices)

Worse, id (IT,., 7 1) 7 3!

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.
Why? It (partly) solves the premise selection problem.

E.g.id 71 72 with localcontextC, :a - T,C, :a — b —T,D; :
a— U7t

But now that we are enforcing gnnl, it's impossible for a metavar to
be a lambda:

Pl w1 => AT (71 Ty)

Case Study: Canonical

Maintain S-normal n-long form, even through substitution, for free.

Why? It enforces static arity, enabling usage of efficient data struc-
tures.

Always full app: { head: Term, args: Array Term }
Partial app: { lhs: Term, rhs: { lhs: Term, rhs: ... }}

Case Study: Canonical, and its Achilles’ Heel

Induction is a big problem.

Case Study: Canonical, and its Achilles’ Heel
Induction is a big problem.

Nat.rec : {motive : Nat - Type} -
motive Nat.zero - ((n : Nat) - motive n - motive n.succ) -
(t : Nat) - motive t

motive IS universally quantified. It's a candidate for every hole.

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Case Study: Hammer
Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

1. Export subgoals to external solvers, often making dependent
types opaque

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

1. Export subgoals to external solvers, often making dependent
types opaque

2. Filter out a list of likely related theorems and send them to the
solver

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

1. Export subgoals to external solvers, often making dependent
types opaque
2. Filter out a list of likely related theorems and send them to the

solver
3. Replaying external proofs back to the type theory via reconstruc-
tion

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Hammer ATP
Automation push-button varies
Expressiveness |limited to decidable fragment | full support for DT and HolL
Trust longer trust chain kernel-checked directly
Performance highly optimized slow in large libs or proofs
Visibility hidden in the solver full trace available

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Hammer ATP
Automation push-button varies
Expressiveness |limited to decidable fragment | full support for DT and HolL
Trust longer trust chain kernel-checked directly
Performance highly optimized slow in large libs or proofs
Visibility hidden in the solver full trace available

Trade-off between expressiveness and automation.

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Challenges:

1. Premise Selection: depending on other solutions (adhoc heuris-
tics, reinforcement learning, etc.)

Case Study: Hammer

Outsourcing the proof search to an external solver (e.g. Z3, Vam-
pire).

Challenges:

1. Premise Selection: depending on other solutions (adhoc heuris-
tics, reinforcement learning, etc.)
2. Induction: no support (recursors are dependently typed)

Case Study: DSP (LLM)

The good:

1. It w Ily! (~ 50% success rate on some datasets)

Case Study: DSP (LLM)

The good:

1. Itv Ily! (~ 50% success rate on some datasets)
2. Somewhat explainable: the informal proof sketch is human-
readable.

Case Study: DSP (LLM)

The ugly:

« Limited to tactic based approach due to the nature of DSP, thus

Case Study: DSP (LLM)

The ugly:

« Limited to tactic based approach due to the nature of DSP, thus
« Need to tackle with tactic selection, a slightly different problem
with premise selection, and

Case Study: DSP (LLM)

The ugly:

« Limited to tactic based approach due to the nature of DSP, thus

« Need to tackle with tactic selection, a slightly different problem
with premise selection, and

« Need to learn how to parametrize the tactic.

Case Study: DSP (LLM)
The bad:

1. Neural networks are not explainable.

Case Study: DSP (LLM)
The bad:

1. Neural networks are not explainable.
2. Insufficient dataset: most datasets are synthetic, and the real-
world datasets are not large enough.

Case Study: DSP (LLM)
The bad:

1. Neural networks are not explainable.
2. Insufficient dataset: most datasets are synthetic, and the real-
world datasets are not large enough.
3. Unreliable benchmarking: data leak problem
« Avoidable: training set pollution
« Unavoidable: prior knowledge from natural language pre-
training

Best of all three worlds

1. Symbolic approach with a solver heart
Regain the power of domain specific tactics.

Best of all three worlds

1. Symbolic approach with a solver heart
Regain the power of domain specific tactics.
2. Symbolic approach with a neuro heart

(Domain-specific) learning based premise/metavar selection.

Best of all three worlds

1. Symbolic approach with a solver heart

Regain the power of domain specific tactics.
2. Symbolic approach with a neuro heart

(Domain-specific) learning based premise/metavar selection.
3. Neuro approach with a symbolic heart

Explainable & reliable logic core.

Open problems

1. Premise Selection

Open problems

1. Premise Selection
2. Lemma Discovery: reuse proofs, generalizing theorems
Might help with the induction headache.

Acknowledgements

Leni Aniva, for her brilliant idea of the three views of proof, insights
on neuro-symbolic methods, and also her help on the diagrams.

Tesla Zhang, for his clear explanation of the Canonical theorem
prover.

Alexander Chichigin, for his attentive review and constructive crit-
Icism.

	Navigating Proof Search in Theorem Provers
	A Brief Tour of ATP in Type Theory

	ATP, as a Complexity Problem
	ATP, as a PL Problem
	How humans prove (in Lean4)
	What are these "holes"?
	How humans prove, alternatively
	How humans prove, alternatively
	Two Paradigms: term vs tactic
	How humans prove, alternatively
	Three Views of Proofs Aniva et al. (TACAS 2025). Pantograph: A Machine-to-Machine Interaction Interface for Advanced Theorem proving, … in Lean 4.
	How humans prove
	How humans prove
	How machines prove: a historical survey of ATP
	The brute-force way
	The hammer way
	The data-driven way (The magic blackbox 😨)
	Challenges
	Metavariable Coupling
	Case Study
	Case Study: Canonical
	Case Study: Canonical
	Case Study: Canonical
	Case Study: Canonical
	Case Study: Canonical
	Case Study: Canonical, and its Achilles' Heel
	Case Study: Hammer
	Case Study: Hammer
	Case Study: Hammer
	Case Study: DSP (LLM)
	Case Study: DSP (LLM)
	Case Study: DSP (LLM)
	Best of all three worlds
	Open problems
	Acknowledgements

